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* Applications

— Ad-hoc IR

— Summarisation
 Computational issues & kernels

* Current and future works

Monday, 28 February 2011



QUANTUM PROBABILITIES IN FOUR
SLIDES
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Systems and states

Quantum theory describes the behavior of matter at atomic and
subatomic scales

Physical system in a known state = unit vector in a state (Hilbert) space

H

Pr(e|V)

one state vector Ensemble of state vectors
(sumto 1)
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Computing probabilities

A state vector (and by extension an ensemble of state vectors)

defines a probability distribution over events (subspaces S)

Q(S|e) = ||S¢|I?

t_ Q for “guantum probability”

Mixture of states NV

Pr(S|V) = ZQ Sle)Pr(p|V)
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Updating distributions

The posterior probability distribution is obtained by projection

f

PriplV>S)=K > Q(S|¢")Pr(¢[V)

@’ [p'=p>S

!

go’ is the normalised projection of
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Multi-part systems

Tensor products of Hilbert space (generalisation of a product of

probability spaces) define a space for multi-part systems

Tensorspace H1® ... H; ®...® H,

Probabilities @ ((X)S ®soz-> = HQ(Sz-Iw)
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DENSITIES AND EVENTS IN THE
TOPICAL SPACE
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Hypotheses

* There exists a space of atomic topics, e.q.
“density in a topical Hilbert space”, where each
aspect correspond to a unit vector

* Topicality can be measured through Quantum
Probabilities

— Is this fragment of text about X?
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Fragments representation

e e one by ane in  spcfol onor, e cuch e he sy deciden
whether to retrieve the incoming document or not. Ouly when the document
i rotrieved by the system, its asociated relevance asesment can be used to
update the profile representation before the system tvalustes the relevance of
the next incoming docwment. This process simulates  wser interaetive relevnce
feeback,since the wser can only judge & dochument i it is etrieved.

21 Building th

Document Subspace

Our main hypothesis i that & document can be represented s the subspace S
spned by  se of vectors, where each vector correspouds to an IN covered by
the document. In practice, we assume that we can decompose a document into
text excerpts that are associated with one or more INs. For 4 document d, we

might be asociated with noise. We uset a W,m trategy to select the rauk of the

‘where we only seec with igenvalues
Superior to the mean of the eigenvalues.

22 Profile Updating and Matehing

The epresenttion ofthe lring el s sl e o the bove doerbd
docunsn eprvaminion. Wo sy o tho stz oty e o
compte oty of  document matchng this

e profc s updated whenever a document 1s etricved. At each step, We
ot v e ek - oo 15 o ol e T8 o
vetrioved documents that are relesant (resp. non elevant). From the set % we
build . negative subspace N (as described in the previons section) and assune
that veetors Iy i this subspice correspon to on-rclevant INs. This process
5 the underlying motivation of nsing & subspace fo the negative sub-profle. Wo
denote N the subspace orthogonsl 1o this nogative subspace

W v B /v sady-xober

s ot euace/ Tokensser sadex heal

i i & specifid order, and each time the system decides

the next. incoming document. This process simulates # tser interactive relevance
foehack, since the user can ouly udge  dociument i it is rcrieved.

21 Building the Document Subspace

Our main hypothesis i that a document can be represented s the subspace Sy
spraned by n se of vectors, where cach vector corresponds to an IN covered by
the documen. In practice, we assume that we can decompose a document into

cxt cxcerpts that are aseocinted with onc or more INe. For a docament d, wo
emote L th s of such vectors.

Ther re vt posiifest defne he sy and how 0 oy

corp 1o a vector, ranging from extactng sonences, paragraphs 10 wing th

As a first approximation, wo chose 1o use

excarpts (simple hewristics were applied to detect sentence bound:

ansform thetn into veetors i €he standard term space afer stop.

Tho weighting scheme used to construct vectors

To compute the subspace 5, from the set of vectors of ty (which are then

The cigenctors

only in thoso that axe associated with high eigenvalues A, sinco low cigonvalucs
it b smocned withnle. W e a il irnegy Lo st e of
Ciemalue decompositon. whero wo ony welect tho igenectors with cigennalucs
Superior to the mean of the cigenvalucs

2.2 Profile Updating and Matching
The representation of the Eltering profile i closely selated to the above described
document representation. We rely on the quantum probability framevork to
compite the probabilty of & document matching this profi
The profile i

can constuct two st /4 and - tha correspond to the st of al the IN of tho
retieed documens it e et (. o sl From the
build a negative subspace N (as doscribed in the previous scction) and assume
thiat veetors lin i this subspace correspond u)unuul(wm IN. This process
i the underlying motivation of using a sul

denote N the subspace

pdated whenever a document is retrieved. AC cach stop, we

0 we

iepace for the negative sub-proile, We
Fihogon 1o this negative subspace

TWo e BEtp: /v sndyxoberte et /sofuaze/ Tokentser  tadex hial
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Fragments representation

e ierd ane by one in  specife order, e cuchthe the e, dciden
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ntences as excerpts (simple henristies were applied ot sentence bound
e e T T e e
word elimination and stemmin. The weighting scheme used to construct vectors

To compute the subspace S, from the set of vectors of Uy (which are then

spauning the subspace). an cizemvalue decomposition is used. The eigenvectors
sociated with the set of non-null cigenalues of the matrix 3,y e’ define
a basis of the subspace spanned by he veetors from Us. As Uhe voctors from s
are extracted from @ corpus, we are nol interested in all the cigenvectors but

might be astociated with nojse. We wsed  simple trategy to slec the rank ofthe
eigenvabie decomposition, where wo only selct the eigenectors with cigenvalues
Superior to the mean of the eigenvalues.

22 Profile Updating and Matehing

dnesment wpresntation. Wo sy on the qunmm by s o
compute the probabilty of n docusent watehing this

e profle i updatod wheneer  docunen s .m.wl At cnch p, e

ST TR T ™

vecors ing i i sspace comspone t0 o eeant N, This proees
i m g motcionof i s o he e b proe. We
& o

W v B /v sady-xoberta et sotace/ Tokeniser adex heal

are filtered one by one in a specifed onder, and each time the system decides
et o rtriews e ncoming documet o not. Ouly when the document
i vl by the syt s asciid slomne aemmen o b wod t
» betore dhe eystem ol the e of
 user interactive relevance

ar lates
codback, since th e can only e a document I it erived

21 Building the Document Subspace

[ Our muain hypothesis i that a document can be represented s the subspace Si
<paned by o se of vectors, where cach vector corresponds to an IN covered by
the document. In practice, we assume that we can decompose a document. into
ext excerpts that are associated with one or more INs. For  document d, we
SRS S
There are varions posibiltes to define the excerpts and how to wap an ex

ot vector, rnging fom exirctng sentnces, pragrophs o wing te

T
Sentences as oxcorpts (smple hourstics were ,\;,..w o deect sentence h(mwlr
), o st thr it vetors it standad e e e

o dimiation d semning. The weifhingschene e b0 onsoves vectors
it F o et (e Socion 3.

o comput tho sbapac S fom the st of vcins of s (ubich re then
sponning the slpace), an gl decomportion s e Tho ciepectors
e i 1 o el of e ot S dee
 bass of the subspae spanned by he veetor from e As the Seciors rom Ua
are extrncted from a corpus, we are not. nterested in al

mich .
r,g,.,m". ‘decompasition, whero we only seloct the eigenvectons with cigenvabucs
e the e of the cigenvalics

2.2 Profile Updating and Matching

document representation. We roly on the aquantum probability. framework to
ompt e bl o o et aicing tis prfl

The profil is updated whenever a step, we
can comtonet o o .l B 1t comenpond o he s ol the e f- e
e documens ha o el (.o o). rom th ek ¥
ol o negtiv subepace N (an dosribed i he previons socion) s e
i vecios Iyng n this subspace coreapond {6 o rlev [N s
s the
denote

H

Tor
b subpnce orthosmal 10 this egative subspace

W -

A set of excerpts

10
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A set of excerpts

n excerpt is an atomic topic

We can associate to each
excerpt a unit vector in the
topical space and hence a

robability distribution over
atomic topics for a fragment

10
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Fragments representation

In practice:
1. E isi
A set of excerpts ach vectorisin a
term space

2. Non null components
correspond to words in
the fragment

3. Weighting scheme can
be tf, tf-idf, etc.

An excerpt is an atomic topic

We can associate to each
excerpt a unit vector in the
topical space and hence a

probability distribution over
atomic topics for a fragment

10
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Two views over extracted topics

‘

We can use any

distribution over the

extracted vectors (in

practice, uniform), i.e.
Pr(p|V)

equals the probability of

one fragment
corresponding to ¢
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Two views over extracted topics

We can use any
distribution over the
extracted vectors (in
practice, uniform), i.e.
Pr(p|V)
equals the probability of
one fragment
corresponding to ¢

We want Q(S|¢) =1

for any extracted aspect...
but no more, i.e. Q(S|p) =0
for orthogonal aspects

S = subspace spanned by the
extracted aspects
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AD-HOC INFORMATION RETRIEVAL
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The Quantum IR (QIR) formalism

Information needs often composed of several aspects

TREC-8 topic 408: “What tropical storms (hurricanes and typhoons) have
caused significant property damage and loss of life?”

We suppose there exists an aspect space (Hilbert space)

aspect = weighted set of aspects vectors

13
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The Information Need space

 AnIN is defined as a multi-part system in a
tensor product of aspect spaces

— (text) Topical (i.e., term space)
— (image) Colour, shape, etc.

— (metadata) Reviews, rating, etc.

We suppose there exists an information need space (Hilbert space)
made of one or more aspect spaces

Information need = weighted set of tensor product of aspect vectors

14
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Motivations

 Multi-dimensional and geometric
representation of

— Queries
— Documents
* Principled way of
— Capturing interaction

— Deal with novelty & diversity
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Multi-dimensional representation

 Documents can have multiple topics
— A new topic = a new dimension
— No document length normalisation needed

* |Ns are naturally diverse (ensemble of states)
— Interaction

— Negative information
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Representation in topical space(s)

 Documents = subspace defined by the
extracted fragments

 Terms (next slides):
— Mixture

— Mixture of superposition

— Tensor
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Ensemble 1

Mixture (M)

Mixture for 2 ensembles

Ensemble 2

The aspect can be any of the fragment
containing any of the terms

T~

LRl

Each time, an aspect must be satisfied for a

document to be relevant

The more aspects are satisfied in the document, the
more the document is relevant
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Mixture of superpositions (MS)

Mixture of superpositions for 2

ensembles
The aspect can be any of the superposition

\of fragments from each set

—=—=— ¥115uperpose ¥21

[ —1— %12 superpose Y21

Ensemble 1

Ensemble 2

Each time, a superposition of aspects must be
satisfied for a document to be relevant

The more superpositions of aspects are satisfied in
the document, the more the document is relevant

19
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Tensor product (MS)

Tensor product for 2 sets

We have 2 independent aspects, one for
each term. Each aspect can be any of the
fragment containing the corresponding
term

\ Vi Q Vo

I:I@I:I

\_l_

Ensemble 1

Ensemble 2

Each time, both (tensor product) aspects must be
satisfied for a document to be relevant

The more tensor products of aspects are satisfied in
the document, the more a document is relevant

20
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Experiments

*TREC1,2,3,5,6,7,8
eBasic ad hoc scenario

eRe-ranking of the top 1,500 documents found by
BM25

Collections

*Sliding window of span 5 for documents
*Window of span 5 for terms
aspects *Binary weighting scheme

Extracting topical

*Compute the term representation for each term

eCompute the query representation from term
representation

eEvaluation with Mean Average Precision

Process

21
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Results with TREC

TREC1 TREC2 TREC3 TREC5 TREC6 TREC7

BM25 0.230 0.209 0.282 0.148 0.224 | 0.182 0.236
M 0.205° | 0.184" | 0.226° | 0.115° | 0.173"  0.142" | 0.165"
MS 0.209" 0.167° 0.206° 0.112° 0.157° 0.117° 0.159°
T 0.232 0.195" 0.281 0.148 0.214 | 0.182 0.234
Foraquery g = {t1,...,t,}
(M) mixture of ensembles V V
(MS) mixture of superpositions of ensembles t19 -9 Vi

(T) Tensor product of ensembles

* significance at a 0.05 level (paired t-test)

22
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SUMMARISATION
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Motivations

e LSA-based summarisation...

|
terms
sao1doy

terms

topics sentences

sentences

e ... bears similarities with quantum probabilities
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Motivations

e LSA-based summarisation...

Most important topics

|
terms
sao1doy

terms

topics sentences
sentences

e ... bears similarities with quantum probabilities
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Motivations

e LSA-based summarisation...

Most important topics

J

topics sentences
sentences

Importance of the
sentence for a given
topic

|
terms
sao1doy

terms

e ... bears similarities with quantum probabilities
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Analysis

e We assume
— one fragment = one sentence

— set of all sentences = density over topics

e Past methods:
— Probability of being of a given topic (Gong et al., 2001)

— Probability of being about one of the topics
(Steinberger et al., 2004) E— o

sentences
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Limitations of previous approaches

e Limitations
— Multi-document summarisation

— A sentence can “belong” to different topics (Gong)
— How to select the dimension (Steinberger)?

— The same topic can be sampled again and again
(Steinberger)
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Proposed method

 The documents define the density over atomic
topics (uniform distribution over documents)

e Select the set of sentences that cover the topics
$* = argmax ¢ (S, ..., |D)

S1yeeny Sn

* Advantages:
— Gives a probabilistic interpretation of previous work
— Address the limitations of previous methods
— Copes with multiple documents
— Can be extended to topic-biased summarisation
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Results (Rouge-2)

0.07431 0.09513 0.12285
m 0.072948  0.089894 0.112884
0.072874  0.089882 0.112107
0.066421  0.082974 0.101842
“ 0.073412 (2) 0.090414 (2) 0.113445 (5)

(*) Using document normalisation

28
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COMPUTING QUANTUM
PROBABILITIES
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Computing probabilities

* We want to compute

Pr(SV) =Y pleV)a(Sle) = Y pleV)]Sel

peV peV

* This can be expressed using a “density operator”
Pr(SV) =) pplV)p' S

peV

= plelV) tr(SppT)

=% Density

— (S Y pleV)ee”)

©EV | Low rank
approximation
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Low rank approximation

 We compute a low rank eigenvalue
decomposition

K
> pleV) = ) by
i—1

peV

— The vectors u span the subspace of the vectors in
the ensemble

— Useful to get rid of noise
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Kernel approach

 Motivations
— Easier to manipulate:
e semantic kernels (e.g. using WordNet)
e composite kernels

I”

— The “real” feature space is too big
* tensor spaces

A kernel just needs to define an inner product in some Hilbert
space, e.g.

2 2 1 2
ket @0y, 01 @ 0i) = o1 - o x i - gy
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Kernel approach

* Problem
— We need to approximate Z p(eV)ep"
. pe)
e Solution
— Kernel-EVD
1% T
ZP(SOW)SOSDT ~ Zai (Z Oéi,go@) (Z Oéi,<p80>
peV =1 peV peV

— All the “guantum probabilities” can be computed using only
the kernel

Monday, 28 February 2011



ONGOING & FUTURE WORK
CONCLUSION
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Ongoing work

 Theoretic & general themes
— Kernel approach
— Validating the hypothesis of an IN space
— Topical space

 ad-hoc IR

— Query representation
— Interaction, Diversity & novelty

e Other

— Summarisation
— Image retrieval (tensor space)
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Limitations

* No principled framework for the definition of
topical aspects and the computation of a query
representation

* Low-rank approximations might be a problem
for high frequency / very ambiguous terms in
ad-hoc IR

 Computational complexity
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Potential & Interesting things

* Links probability and geometric approaches in
Information Access

— Cosine similarity in IR
— LSA-based approaches in summarisation
* Multi-dimensionality = diverse topics (or
information needs)
— interaction, diversity, novelty

* Kernel approaches will strengthen the QIA
framework
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Thanks! More information?

CIKM 2010 proceedings

B. Piwowarski, I. Frommbholz, M. Lalmas, and K. van Rijsbergen.
What quantum theory can bring to IR?

My Website

http://www.bpiwowar.net/quantum-ir/

Source code available at

http://sourceforge.net/projects/qir/
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